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Green’s function for a composite (piecewise-uniform) piezoceramic plane with a crack between the 

phases is constructed explicitly. It is assumed that the crack edges are free from mechanical loads and 

the normal component of the electric induction vector and the tangential component of the electric 

field strength vector are continuous along the crack. The known representation of the solution of the 

problem of electroelasticity using six functions analytic in half-planes is used, Green’s function for a 

composite plane without a crack being constructed in the first place. The solution of the fundamental 

problem is found using analytic continuation and is reduced to matrix Riemann problem in a finite 

interval. The stress intensity factors at the crack tips are also determined. 

Green’s function was constructed in [l] for a homogeneous piezoceramic plane with a recti- 
linear cut. 

1. Consider an unbounded medium consisting of two different piezoceramic half-planes 
attached to one another along the sections X, = 0, Ix, Ia a (Fig. 1). There is a gap along the 
section X, = 0, I xl lc a, which will be treated as a crack between the phases. Suppose that either 
a concentrated force P =(P,, P3) is applied at a point (x,~, x,) in the upper half-plane or a 
concentrated electric charge p is placed at that point. Denoting the quantities corresponding to 
the half-plane r by a superscript r (r = 1, 2) we write the mechanical and electrical boundary 
conditions on the x,-axis in the form 

0;;’ = o;;‘, &ji) = du, (2), Ix,l, a (i =1,3) 

E,“’ = Ef2’, 4” = Dj2’, --m < X, < 00 

o$)+ = 0, o$‘- = 0, IX,lC a 

(1.1) 

(1.2) 

where cri3, y, E,, D3 are the components of the stress tensor, the displacement vector, and the 
electric field strength and induction vectors, respectively. By o’ we mean the limiting values of 
o on the upper edge (the plus sign) and lower edge (the minus sign) of the crack. 

We assume that the initial piezoceramic polarization vector on the upper and lower half- 
planes is parallel to the x,-axis. In this case the components of the vector U = (U,) = {o,,, -o13, 
ul, u;, E,, -Q) have the form [2] 

17, =2Re i c~~~(.z,,) (k = 1,2,..,6) 
v=l 

(1.3) 
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Fig. 1. 

Cl” = Y”9 C2” = YVCC”, c3v = Pv- c4v = 4v, csv = L Gjv = 6 

A, = %I +&33d, Pv =wvd ++3Yv +~3,ab 

4v = 833~” /CL, + SI~Y,& + d33b 

‘~=qA/kv--,gvv Zv=++~vx3 

A, =W,s -d33&, -d3d 

Here CL, (Imp, > 0, v = 1, 2,3) are the roots of the characteristic equation 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The coefficients sii = $ are the elastic compliances for a constant value of the electric field, d, 
are the piezoelectric constants, and E, = E: are the permittivities for a constant value of the 
mechanical stress [3, 41. 

Hence we arrive at the boundary-value problem for determining the six functions d$‘(z$“), 
each of which is analytic in its plane f’ = x1 + f.ty)~~ (v = 1, 2, 3; r = 1, 2), from the conditions 
ensuring that the components U, (k= 1, 2, . . . , 6) can be extended by continuity across 
the intervals Ix, I> a and the conditions U: = 0, Ui = 0, Uf’ = Us), Uf) = Uf’ on the edges of 
the interval [-a, a]. This problem should be solved by means of the analytic continuation of the 
appropriate functions followed by reducing it to Riemann problems. However, to begin with, 
one must construct the fundamental solution for a composite plane without a gap. 

2. Consider a piecewise uniform plate consisting of two different piezoceramic half-planes 
attached to one another along the entire length of the x1-axis. Suppose that either a concen - 
trated force P = (PI, P3) acts at a point (_xIO, x,) in the upper plane or a charge p is placed at 
that point. By generalizing the reflection method [5] and using the results of [6], we can 
represent the solution in the form 

@‘l’(z’l’) = 
” Y 

Here 

21m i A(‘)(p(I))“-l =_B, 
m m h ( 

n =0,1,...,5) 
m=l 

(2.1) 

(2.2) 
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*, = (dg (I) - d,‘:))&k3 ‘) - d#‘#, A2 = sl(f)&&) - (d$” 

(1) d(l) (1) (1) (1) 
*3 = V33 - 1s M31 -s11 &II 

z is the complex conjugate of A and the constants AZ’ can be determined from the system of 
equations (/I is the thickness of the plate). 

The determinant of this system is 

A = -8iImP, Imp2 ImP31P#2F31-2 X 

X I@2 -p1)@3 -PI)(cL3 -P2)(c12 -FlXP3 -cLI)(P3 -F2)‘*” 

To compute ati we invoke the boundary conditions (1.1) on the whole x,-axis. Substitution 
of (2.1) into these conditions leads to the following relationships uniquely defining the matrix 
Ila” II “In (v=l , 2 ,..., 6; m=l,2,3) 

; $a;; + p4.p 
b “+3.m)=c~ ( m=l,2,3; k=1,2 ,..., 6). (2.3) 

V=I 

This completes the construction of the fundamental solution of (2.1). 
If the concentrated force is applied at a point (x1,,, nM) on the lower half-plane, the funda- 

mental solution has the form 

qp)(p)) = 
Y Y 

(2.4) 

where 4) and a:; can, respectively, be determined from Eqs (2.2) and (2.3) with the super- 
scripts 1 and 2 interchanged. 

3. We will seek a solution of the fundamental problem posed in Section 1 in the form 

~,“‘(~~‘)=c~l”(~~‘)+Y~“(r,“‘) (u=l,2,3; r=l,2) (3.1) 

the functions Q$’ ($)) being given by (2.1)-(2.3), while YT’ (z$“), which account for the 
perturbations due to the gap between the phases, are to be determined. 

We shall use the idea of analytic continuation of Y$) (z$) as follows. We continue 
Y!)(z) (Y,‘~)(z)) analytically across the intervals I xl Ia a into the lower (upper) half-plane with 
the aid of the functions v(z) (F(Z)), 

- - 
which satisfy the relationship YJV+(X,) = ‘y,‘l)-(x1) 



358 L. A. Fil’shtinskii aud M. L. Fil’shtinskii 

(‘I!:)-(x,) = yl,““(x,)). We use the definition F(z)=-) and we denote by Y*(xi) the 
corresponding limiting values of Y(z). Taking all this into account, we find from (1.3) that 

(3.2) 

u,- (x, ) = i 
-- 

cpIo’- (x,)+cg)Y'(2)+ 
Y 

V=l 
(x, )} + 2 Re i c~)@:~)(x, ) 

V=l 

We introduce the functions 

i 

3 0) (1) 
-- 

Mz)=~hvY: (zbCg)Y;2)(z)}, x3 >o 

4(z)= 

h(z) = i Icg’Yy(z) 
-- 

-c;‘Y”‘(z)) 
(3.3) 

Y ’ x3 < 0 (k = 1,2,...,6) 
V=l 

By (1.3) and the fact that U, (k = 1, 2,5, 6) can be extended by continuity across the cut, we 
get 

fk+(~l)-f;(~‘)=~~(~,)-~~(q)=o (3.4) 

It follows that the functions fk(z) (k = 1, 2,5, 6) with elements h(z) for Imz > 0 and fk(z) for 
Imz c 0 are analytic in the whole z-plane and can be set equal to zero. 

Relationships (3.3) imply the limiting equalities 

&cg)Y;“+(x*) 
-- 

- cg Yi2)+ (x, )} = fk’ (x, ) 
v=l 

~;{~~(x,,-c~)Y~~‘-(x,)} = -&-(x,) (k = 1,2,...,6) 
v=l 

(3.5) 

which, by (3.2), (3.4), and the boundary conditions U,+ = U; = 0 (k = 1, 2) lead to the following 
matrix Riemann problem in the interval (-a, a) 

Bf’(x, ) - Ef - 0, I= Nx, 1 (3.6) 

B=llb,ill= 
=A& Rtxlj= Nl 

l ’ I II N2 

A = CZ C$, Cl’:‘, 

Cg’ 9 cg , Cg), 

N, = -4Re ~c~)d2)(x1) Y 
IJ=l 

. . . . . . . . . . . . . . . . . . . . . . . ...*. . . . . . . . . ..*... 
c;“‘, 0 0 0 

-C6, , -C62 . -C63 

0 

0 

c 
f: 
0 

0 

Now we choose (p,,, okZ) and h, (k = 1, 2) to be the eigenvectors and eigenvalues, respect- 
ively, of the following homogeneous systems 

p&3 + x,b,3)+(-l)k-‘p&&3 + X,b,) = 0 (k = 192) (3.7) 

P~l(~~+htq4)+(-1)L-‘Pt2(~~+Akb24)=0 (k=1*2) (3.8) 
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Then (3.6) can be reduced to two scalar Riemann problems 

ax, )+ &P;(x, 1 =N;(X*), Ix*l<a (k=1,2) (3.9) 

N; =Pk,N,(X,)+(-l)k-‘Pk2N~(X,) 
The eigenvalues h, and h, appearing in (3.9) can be found from the conditions for the non- 

trivial solvability of system (3.7) (3.8). these conditions can be reduced to the quadratic 
equation 

A:,? + 2qh,,2 + r2 = 0 (3.10) 

’ = 
Re(&,bz~ - &b,4 1 &3b24 - b2&, 

b,3b24 - q4q3 ’ r2 = b,3b24 - b14b23 

The roots of Eq. (3.10) can of course be represented as 

1 A, =--e 43, A 
2 = Re-, 

R 
8=-fargr2 

ImR=O, O&O<271 

Solving (3.9), we find that [7] 

(3.11) 

(3.12) 

4(z)=kj (xN’;;;;x,* Y2 =5 
a - k 

Xk(z)=(z+a)-YL(~-a)Y’-t, yt =i--$+$lnR 

where X,(x) = X;(x) are the values of the canonical functions X,(z) on the upper edge of the 
cut, M, being arbitrary complex constants. 

To fix these constants one must ensure, first, that the displacement vector can be extended 
by continuity across the intervals Ix, 12 a (the boundary conditions involve the derivatives with 
r-pect to displacements). This condition will be satisfied if Ml and M2 are connected by 
M2 = h,M,. Next, we state the uniqueness conditions for the displacements in the composite 
plane 

ldUi =- jd[ui]=O (i=1,2) (3.13) 
C --(1 

where c is an arbitrary closed contour surrounding the interval [-a, a] on the x,-axis and [u] is 
the jump of u when passing across the cut. 

Introducing here the expression for u,f(xJ from (1.3) and taking (3.1) and (3.12) into 
account, we find after some reduction that 

(3.14) 

nl~’ = no) = - ~ ~ pljC~2v)atl~,,, (m = 1,2,3) 
v-1 j=l 
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Pkl = 1 

,,k2 = (-l)k(ii’3 + i,b,,)& + A,&,)-’ ck = ly2) 

Now we express the desired functions in terms of f,(z) from (3.3). We have 

Y:“(Z)= i lvjfi(Z), IIllZ>O (~=1,2,3) 
j=3 

@2’(Z) = - i 
Y 

t 

j=3 
v+3,jfj(Z)* Imz<O 

where 1, (m=1,2,... ,6; j = 3, 4) are the matrix elements of C;‘. 
By substituting the functions Qz), f,(z) found from (3.12), carrying but the necessary 

quadratures, and using (3.14), we finally find that 

qqz(rt)= i i 1 - x (z”‘)x-‘(z(‘) ) 
Y Y 

m=l n=l i( nztrYi tb mo +x (Zq a$‘x 
I( Y 

Y -zmo 1 
O(l;)y(‘)A(‘l 

II I” m 

#‘) = 2g; 

/ly (l+ h,)d, 
9 do = d13d24 -d,4& 

(3.15) 

It follows that Green’s function for a composite piezoceramic plane with a crack between 
the phases can be found explicitly from (3.1), (2.1) and (3.15). The analytic representation 
of Green’s function implies that the mechanical stresses as well as the components of the 
electric field at the crack tips between the phases have power-like singularities, amplified by 
the oscillations in small neighbourhoods of x1 = rta. This effect is also present in isotropic 
composite media [8]. 

4. To determine the stress intensity factors at the tips of the crack between the phases we 
leave in (3.15) only those terms that contain the canonical functions X,(z). Then in the vicinity 
of x1 = fa we obtain 

(V;‘)}=4& 2 i At’) (‘1 -=) ” 
m 

m=l n=l 
(20)v: -’ QP&[(~)” +l]}+O(l) 

for x1 > a and 

{Vj’)}=+Re ; $ 4’ 
m=l n=l 

(4.1) 

ycr) = &$ 
1 

vp = _(# (r=1,2) 
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3 4 
0;:’ = I: c (-1) - 

v=l j=3 
j ’ cf,+qj, Dk2 = &,, 4, = Df,‘dG’ 

for x, c-u. 
As expected, the resulting expressions for Vt’ are independent of r. In accordance with the 

above asymptotic forms, we express the mechanical stress intensity factors as follows. At the 
tip x, = a 

1/2+8/(2x) 

OjCx* > = $K;), x, -+ a (x, > a) 

~,0,)=~33, ~2($)=~,3r B,,, 

2 S$r)D. 
(Ki+.) =4Rei, Bz) C --/ 

ll=l 

At the tip X, = -a 

(4.3) 

Here A=P for P=JP,*+P: >O and p=O, and A=pld$:) for p#O and P=O. 
When evaluating these limits it was assumed [S] that Imy, .ln Ix, &III-O. Computations 

confirm this approximate equality. 
Nevertheless, the solution remains physically incorrect in “microscopic” neighbourhoods of 

the tips because the stresses change their sign an infinite number of times. 

5. The above approach can also be extended without major modifications to the case of an 
anisotropic composite plane with a crack on the dividing boundary between the phases in a 
Cartesian system x,0x2. Green’s function is given by (3.15) with summation with respect to m 
from 1 to 2, and the coefficients c, (k, v = 1, 2) are as follows: c,, = 1, c2V = pV, c~,, = CL,,JI~ - 
u&,, +q2, c,, = q2uV -&6 +q, /p, (uik are the elasticity parameters of the material, and p, are 
the corresponding eigenvalues [9]). In (4.2) and (4.3) by o1 and o2 we now mean, respectively, 
the components cr,, and CT,, of the stress tensor (p = 0). 

6. As an example consider a PZT-5 (the upper half-plane), BaTiO, (the lower half-plane) 
pair with a crack x, = 0, -a c xi c a between the phases and a concentrated force (PI, P3) or 
charge p at the point xl0 = 0, X% = H z= 0. The dependence of (K:) on E = H la is shown in Fig. 
2, in which curves l-3 are constructed for the cases p1# 0, P3 = p=O; p #O, & = p3 = 0 and 
P3 f 0, e = p = 0, respectively. The solid lines represent (K;) and the dashed ones (K:). The 
analogous results for (K,f) are presented in Fig. 3. 

The results are altered if the components of the pair are interchanged. In this case the data 
for (K:} are presented in Fig. 4 We put P/h = 1, pI(d$h) = 1 in the computations. 
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